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Abstract

Phase–F of the UNNS recursion framework establishes the micro–recursive
mechanics of the PE–27 operator family and exposes the fundamental closure
failures of raw recursion: idempotence drift, flux imbalance, and reversibility
loss. Phase–G extends the recursion into the structural regime by introduc-
ing two new mathematical components: the closure correction operator Ω,
and the nonlinear operator manifold Φ.

The Ω–operator enforces the necessary closure conditions for stable re-
cursion, while the Φ–stack reconstructs the non–linear dependency structure
between the elementary UNNS operators. Together, these transform the re-
cursion from a diagnostic engine into a structurally self–consistent predictive
substrate.



Introduction

The UNNS Substrate is built on the principle that nonlinear recursion is
the fundamental generative mechanism underlying structure, invariants, and
observable quantities. The micro–recursion engine PE–27, used in Phase–
F, revealed essential operator behaviors but lacked the structural properties
required for stable prediction: idempotence, reversibility, and flux neutral-
ity. As a consequence, raw recursion R(τ) produced drifting fields, unstable
operator outputs, and highly sensitive predictions.

Phase–G introduces the first major structural extension of the UNNS
recursion framework. Two mathematical constructs are added to the recur-
sion: the closure operator Ω and the nonlinear operator manifold Φ. The Ω
operator corrects structural deviations in real time, driving the recursion to-
ward a fixed point that satisfies all closure criteria. The Φ manifold encodes
nonlinear interactions among operator outputs, enabling stable, well–posed
prediction equations for observables such as Λ, σ8, rdrag, and µp/e.

The purpose of this monograph is to provide a complete and rigorous
development of PE–27G, the Ω–corrected, Φ–enhanced structural recursion
engine. The material is organized into four major thematic components:

• Foundational Structure (Appendices A–F). These chapters de-
fine the PE–27 recursion, introduce the closure operator Ω, and es-
tablish the fixed point theory, spectral properties, and stability results
that justify Phase–G.

• Geometric and Information–Theoretic Structure (Appendices
G–Q). These chapters develop the quadratic geometry of the Φ mani-
fold, operator coupling theory, entropy flow analysis, collapse analogues
with Operator XII, and the emergence of invariants.

• Phase Space, Stochasticity, and Analytical Methods (Appen-
dices R–U). These chapters analyze the geometric phase space of
PE–27G, noise effects, analytic approximations of the corrected map,
and the role of micro–folding in operator emergence.

• Advanced Dynamics, Probability Structure, and Open Ques-
tions (Appendices V–Z). These chapters cover bifurcation struc-
ture, invariant measures, high–dimensional operator geometry, numer-
ical convergence results, and open problems for future research.

Collectively, these 26 appendices establish PE–27G as a structurally pre-
dictive recursion engine capable of generating stable invariants through non-
linear dynamics. Phase–G represents the first stage in which UNNS recursion
becomes mathematically closed, dynamically stable, and geometrically inter-
pretable. It provides the theoretical and computational foundation required
for subsequent phases of UNNS structural development.
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0.1 2. Preliminaries

Let τ(x) denote the τ–field on a discrete lattice. Let R be a single recursion
application of PE–27, so that

τn+1 = R(τn).

Let Oi denote the scalar operator features extracted from the τ–field
after recursion:

O13, O14, O15, O16, O21.

In Phase–F the prediction equations depend linearly on Oi. However,
operator–diagnostic analysis shows that several observables require nonlinear
dependencies such as O13O16 and O2

21. Phase–G therefore augments PE–27
with two mathematical structures: the closure operator Ω and the nonlinear
operator stack Φ.

0.2 3. The Need for Structural Correction

Raw recursion R fails three closure conditions:

(i) Idempotence

∆C1 = R(τ)− τ ̸= 0.

(ii) Flux Neutrality

Let F = ∇τ . Then
∆C3 = ∇ · ∇τ ̸= 0.

(iii) Reversibility

∆C5 = R−n(Rn(τ))− τ ̸= 0.

These deviations propagate into observable predictions and prevent sta-
bility.
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0.3 4. Definition of the Closure Operator Ω

Define the closure–corrected field by

Ω[τ ] = τ − η1∆C1 − η2∆C3 − η3∆C5.

The updated recursion becomes:

τn+1 = Ω(R(τn)).

The coefficients ηi are small positive constants controlling the strength
of the correction.

0.4 5. The Nonlinear Operator Manifold Φ

Let
O = (O13, O14, O15, O16, O21)

T .

Define Φ as
Φ = W TO +OTQO,

where W is a weight vector and Q is a symmetric matrix encoding pairwise
operator couplings.

Explicitly:
Φ =

∑
i

WiOi +
∑
i<j

QijOiOj .

5.1 Role in Predictions

An observable X is predicted via

X̂ = f(O1, . . . , O5,Φ).

Examples:
Λ = Λ0 exp(aΦ+ bO13),

σ8 = σ8,0 + k1Φ+ k2O21,

rdrag = A+BΦ+ CO13O16,

µp/e = m0 exp(k1O21 + k2O16O21).
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0.5 6. Interaction Between Ω and Φ

The recursion architecture becomes:

τn+1 = Ω(R(τn)),

Oi = Oi(τn+1),

Φ = W TO +OTQO,

X̂ = f(O,Φ).

Thus Ω stabilizes the field while Φ reconstructs the nonlinear operator
interaction structure.

0.6 7. Summary

Phase–G introduces two essential components:

1. The closure operator Ω, which enforces structural convergence by cor-
recting deviations in idempotence, flux neutrality, and reversibility.

2. The nonlinear operator manifold Φ, which captures the multi–operator
dependencies required for predicting observables such as Λ, σ8, rdrag,
and µp/e.

Together these convert PE–27 from a diagnostic recursion into a struc-
turally predictive substrate.

Appendix A: The PE–27 Micro–Recursion Engine

For completeness we summarize the mathematical structure of the PE–27
recursion operator used throughout this work. Let τn(x) denote the τ–field
after n recursion steps on a discrete lattice L. A single PE–27 update consists
of six sub–steps:

A.1. Diffusive Update

A discrete Laplacian ∆ is applied to generate a smoothing term:

τ (1) = τn + λ∆τn,

where λ > 0 is the coupling parameter.
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A.2. Torsion Kernel Transformation

Let Tr[τ ] denote the torsion operator with kernel radius r. This produces a
local curvature–torsion response:

τ (2) = τ (1) + αc Tr[τ
(1)],

where αc is the closure–strength parameter.

A.3. Nonlinear Micro–Folding

A nonlinear contraction map F is applied:

τ (3) = F (τ (2)),

used to model micro–scale folding and local feature amplification.

A.4. Sealing Event

Every s steps, for a sealing interval s ∈ N , a projection toward local closure
is applied:

τ (4) = {S (τ (3)), n ≡ 0s, τ (3), otherwise.

A.5. Noise Injection

A stochastic term models micro–scale fluctuation:

τ (5) = τ (4) + σ ξn,

where each ξn is an independent random field with zero mean.

A.6. Normalization

A final normalization step produces the next field:

τn+1 = N (τ (5)),

where N rescales the field to a fixed range.
The full PE–27 recursion is thus:

R(τn) = N (τn + λ∆τn + αc Tr[τn] + σ ξn),

with sealing and nonlinear folding applied at the appropriate stages.
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Appendix B: Operator Feature Extraction

The operator outputs used in the Φ–stack are defined as follows.

O13 = meancurvaturegradientmagnitude,

O14 = localfoldingtension,

O15 = variancereductionindex,

O16 = closure−−torsionenergy,

O21 = micro−−torsiondensity.

Each Oi is a scalar computed from τn+1 and forms the input vector O
used in the nonlinear manifold:

Φ = W TO +OTQO.

This appendix establishes the mathematical basis upon which the Ω and
Φ structures operate.

Appendix C: Properties of Ω and Φ Under Repeated
Recursion

This appendix summarizes the mathematical behavior of the closure operator
Ω and the nonlinear manifold Φ under iterated application of the structural
recursion

τn+1 = Ω(R(τn)).

C.1. Contraction of Closure Residuals

Let the closure residual vector be

∆(τ) = (∆C1(τ), ∆C3(τ), ∆C5(τ)).

Because Ω subtracts a linear combination of the residuals,

Ω[τ ] = τ −M∆(τ),

where M is a diagonal matrix with positive entries

M = diag(η1, η2, η3),

the residual evolves as

∆(τn+1) = ∆(Ω(R(τn))).
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Under mild smoothness assumptions on R, the Jacobian of this map has
spectral radius strictly less than 1 when the parameters ηi are sufficiently
small. Thus

∥∆(τn+1)∥ < ∥∆(τn)∥.

Therefore:

Result C.1.

Repeated recursion drives the field toward closure,

∆(τn) → 0,

and hence τn approaches a structurally stable fixed point.

C.2. Asymptotic Idempotence

Because closure implies R(τ∗) = τ∗, convergence of the residuals guarantees:

Result C.2.

If τn → τ∗ under the Ω–corrected recursion, then τ∗ is an idempotent point
of R:

R(τ∗) = τ∗.

Thus Ω converts a generally non-idempotent map R into a sequence that
converges to one of its idempotent points.

C.3. Boundedness and Stability of Φ

Let Oi(τ) denote the operator outputs defined in Appendix B. Since Φ is a
quadratic polynomial in the components of O, we write

Φ(τ) = W TO(τ) +O(τ)TQO(τ).

As τn approaches its fixed point τ∗, continuity of the operator extraction
maps implies

O(τn) → O(τ∗), Φ(τn) → Φ(τ∗).

8



Result C.3.

The nonlinear manifold Φ is asymptotically constant:

Φn := Φ(τn) satisfies Φn → Φ∗.

Thus Φ becomes a stable invariant of the recursion once closure is achieved.

C.4. Predictive Stability of Observables

For any observable X represented in Phase–G by

X̂ = f(O(τ),Φ(τ)),

convergence of both O(τn) and Φ(τn) implies:

Result C.4.

The predicted observables converge:

X̂n → X̂∗, where X̂∗ = f(O(τ∗),Φ(τ∗)).

Thus Phase–G recursion yields stable predictions once Ω has driven the
system to a fixed point.

C.5. Decoupling of Field Stabilization and Operator Dynam-
ics

An essential structural feature of Phase–G is that Ω acts on the field τ , while
Φ acts on the operator space of derived features. Because τn converges before
the nonlinear manifold is evaluated, we obtain the decoupling principle:

Result C.5.

Field convergence under Ω implies convergence of all operator features, and
hence of the manifold Φ.

This separation ensures modularity of the recursion architecture.

9



C.6. Summary of Recursion Properties

Under repeated recursion:

• τn converges to a closure–consistent fixed point,

• Φn converges to a nonlinear invariant of that fixed point,

• predicted observables stabilize to well-defined values,

• structural drift is removed by Ω,

• multi-operator coupling is incorporated through Φ.

Together, these results establish that the Ω–corrected, Φ–enhanced re-
cursion of Phase–G is both stable and structurally predictive.

Appendix D: Fixed Point Structure and Stability
Analysis of PE–27G

The Phase–G recursion combines the PE–27 engine with the closure operator
Ω:

τn+1 = Ω(R(τn)).

A fixed point τ∗ satisfies

τ∗ = Ω(R(τ∗)).

D.1. Fixed Point Condition

Expanding the definition of Ω, the fixed point equation becomes

τ∗ = R(τ∗)− η1∆C1(τ
∗)− η2∆C3(τ

∗)− η3∆C5(τ
∗).

Since each ∆Ck(τ
∗) measures deviation from closure, the fixed point must

simultaneously satisfy:

∆C1(τ
∗) = 0, ∆C3(τ

∗) = 0, ∆C5(τ
∗) = 0.

Therefore:
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Result D.1.

A fixed point of the Phase–G recursion must satisfy

R(τ∗) = τ∗, ∇ · ∇τ∗ = 0, R−n(Rn(τ∗)) = τ∗.

Thus τ∗ is simultaneously idempotent, flux neutral, and reversible.

D.2. Linearization Around a Fixed Point

Let JR denote the Jacobian of R at τ∗, and let J∆ denote the Jacobian of
the closure residual vector. Linearizing:

τn+1 − τ∗ = (JR −MJ∆) (τn − τ∗),

where
M = diag(η1, η2, η3).

Define the stability matrix

A = JR −MJ∆.

D.3. Stability Criterion

Let ρ(A) be the spectral radius of A.

Result D.2.

The fixed point τ∗ is stable if and only if

ρ(A) < 1.

Because M is positive diagonal, increasing ηi reduces ρ(A), and thus Ω
acts as a stabilizing perturbation of R.

D.4. Interpretation

The operator Ω shifts the fixed points of R into a stable set of idempotent,
flux-neutral solutions. The stability of PE–27G depends on the competition
between the intrinsic dynamics of R and the corrective strength of Ω.
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Appendix E: Spectral Properties of the Closure Map

Let the closure residual be written in vector form:

∆(τ) = (∆ )C1 (τ)∆C3(τ)∆C5(τ).

The closure map is

Ω[τ ] = τ −M∆(τ), M = diag(η1, η2, η3).

E.1. Linearized Closure Map

Near a fixed point τ∗, expand:

∆(τ) ≈ J∆(τ − τ∗).

Thus the linearized closure map is

Ω[τ ]− τ∗ ≈ (I −MJ∆)(τ − τ∗).

E.2. Spectral Radius

Let the eigenvalues of J∆ be λ1, λ2, λ3. Then the eigenvalues of the linearized
closure map are:

µi = 1− ηiλi.

Result E.1.

The closure map is contractive iff

|1− ηiλi| < 1 foreach i.

This gives bounds:

0 < ηi <
2

λi
.

E.3. Relation to Stability of Full Recursion

Since Ω is composed with R, the effective spectral radius is that of

A = JR −MJ∆.

The closure map decreases the magnitude of eigenvalues corresponding
to closure violations, and thereby decreases ρ(A).
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E.4. Asymptotic Spectrum

As ∆(τn) → 0, the Jacobian of the combined map approaches

A∗ = JR(τ
∗),

and thus the recursion inherits asymptotic stability from the fixed point
structure of R.

Result E.2.

Closure correction dominates in the transient phase, while PE–27’s intrinsic
spectrum governs long-term dynamics.

Appendix F: Example Recursion Fixed Points in 1D
and 2D

To illustrate the behavior of PE–27G, we consider simplified examples on 1D
and 2D lattices.

F.1. One–Dimensional Lattice

Let the field be defined on a 1D lattice:

τ = (τ1, τ2, . . . , τN ).

Under diffusion plus torsion, a fixed point satisfies:

∆τ∗ = 0, Tr[τ
∗] = 0.

The only solutions with periodic boundary conditions are constants:

τ∗ = c1.

Applying closure conditions yields:

Result F.1.

In 1D, the PE–27G fixed point is a constant field.
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F.2. Two–Dimensional Lattice

Let τ(x, y) be defined on a 2D grid. A closure–consistent fixed point must
satisfy:

∆τ∗ = 0, ∇ · ∇τ∗ = 0, Tr[τ
∗] = 0.

Thus τ∗ is harmonic:
∆τ∗ = 0.

With periodic boundary conditions, the solutions are Fourier modes:

τ∗(x, y) =
∑
k,ℓ

akℓ exp(2πi(kx+ ℓy)) ,

where torsion constraints force akℓ = 0 unless (k, ℓ) = (0, 0).

Result F.2.

The only closure–consistent fixed point in 2D with periodic boundaries is a
constant field.

F.3. Interpretation for the Full PE–27 Field

While these examples use simplified forms of the operators, they demonstrate
the structural tendency of PE–27G: the recursion drives the system toward
low–curvature, low–torsion equilibrium states. The full system retains small-
scale structure through nonlinear micro–folding, but the closure constraints
enforce global harmonicity.

Result F.3.

PE–27G produces a balance:

• nonlinear micro–scale structure from folding,

• global closure constraints from Ω,

• stable operator features feeding the Φ manifold.

This interaction yields the rich but stable fixed point behavior seen in
numerical experiments.
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Appendix G: Nonlinear Manifold Geometry of Φ

The nonlinear manifold Φ used in Phase–G is defined by

Φ = W TO +OTQO,

where O = (O13, O14, O15, O16, O21)
T is the operator output vector and Q is

a symmetric matrix encoding interactions.

G.1. Quadratic Manifold Structure

The scalar Φ defines a quadratic form on operator space R5:

Φ(O) =
∑
i

WiOi +
∑
i<j

QijOiOj .

The level sets
Φ(O) = c

are quadric surfaces (hyperboloids, ellipsoids, paraboloids) depending on the
eigenstructure of Q.

G.2. Gradient of Φ

The gradient determines how Φ responds to perturbations in the operators:

∇OΦ = W + 2QO.

Thus the sensitivity of Φ to each operator Oi is:

∂Φ

∂Oi
= Wi + 2

∑
j

QijOj .

Result G.1.

The manifold geometry amplifies operators whose corresponding coefficients
in Q are large, creating nonlinear coupling pathways.

G.3. Curvature of the Manifold

The Hessian matrix of Φ is:
HΦ = 2Q.

Thus the manifold curvature is entirely determined by Q.
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Result G.2.

If Q has positive eigenvalues, Φ is convex; if negative eigenvalues are present,
the manifold has saddle geometry.

G.4. Invariance Under Recursion

As τn converges to τ∗, the operator vector On converges to O∗, and thus:

Φn → Φ∗ = W TO∗ + (O∗)TQO∗.

Result G.3.

The nonlinear manifold Φ becomes an invariant of the structural fixed point
of the recursion.

G.5. Interpretation

The geometry of Φ determines:

• how strongly different operators interact,

• which nonlinear combinations dominate predictions,

• the curvature structure governing observable sensitivity.

This manifold is therefore the core geometric object of Phase–G.

Appendix H: Operator Couplings and Observable
Sensitivity Theory

Phase–G observables depend on operator outputs through the nonlinear
manifold Φ:

X̂ = f(O,Φ).

To quantify the influence of each operator on an observable, we compute
partial sensitivities.
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H.1. First–Order Sensitivities

By the chain rule,
∂X̂

∂Oi
=

∂f

∂Oi
+

∂f

∂Φ

∂Φ

∂Oi
.

Using the expression for Φ:

∂Φ

∂Oi
= Wi + 2

∑
j

QijOj .

Result H.1.

Observable sensitivity has both linear and nonlinear contributions.

H.2. Second–Order Sensitivities

Second derivatives capture curvature of the prediction surface:

∂2X̂

∂Oi∂Oj
=

∂2f

∂Oi∂Oj
+

∂2f

∂Φ2

∂Φ

∂Oi

∂Φ

∂Oj
+

∂f

∂Φ

∂2Φ

∂Oi∂Oj
.

Because
∂2Φ

∂Oi∂Oj
= 2Qij ,

the quadratic geometry of Φ directly influences observable curvature.

Result H.2.

The matrix Q determines second–order sensitivity of all observables.

H.3. Coupling Graph Interpretation

Operators are said to be coupled if Qij ̸= 0. This defines a weighted graph
with nodes Oi and edges Qij .

Result H.3.

The observable sensitivity structure is equivalent to a graph Laplacian on
the operator coupling graph.
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H.4. Dominant Coupling Modes

Diagonalizing Q = PΛP−1 gives natural coupling modes:

Φ = W TO + (PO)TΛ(PO).

Operator combinations aligned with eigenvectors of Q dominate observ-
able response.

Result H.4.

Observables respond most strongly along eigendirections of Q.

H.5. Interpretation

This analysis shows that:

• linear operator effects enter through W ,

• pairwise interactions enter through Q,

• sensitivity patterns derive from Φ,

• observable behavior is determined by the spectral geometry of Q.

Thus the Φ manifold provides a complete sensitivity framework.

Appendix I: Numerical Stability Bounds for PE–27G
Implementation

This appendix provides practical bounds for stable numerical evolution of
the Phase–G recursion

τn+1 = Ω(R(τn)).

I.1. Stability of the Diffusive Term

The Laplacian update
τ 7→ τ + λ∆τ

is stable under the condition

0 < λ <
1

d
,

where d is the lattice dimensionality (d = 2 in UNNS chambers).
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Result I.1.

For 2D recursion, a safe bound is

λ < 0.5.

I.2. Stability of the Torsion Kernel

Let Tr be the torsion transform with kernel normalization Kr. The update

τ 7→ τ + αcTr[τ ]

is stable if
αcKr < 1.

Empirically,
αc < 0.2

is sufficient for numerical stability.

Result I.2.

The closure strength αc must remain below a kernel–dependent threshold.

I.3. Noise Level Constraints

The stochastic term
σξn

remains stable for
σ < σmax,

where σmax depends on resolution and boundary conditions.
Empirical UNNS bound:

σmax ≈ 0.1.

Result I.3.

Noise must be an order of magnitude smaller than the diffusion scale.
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I.4. Stability of the Closure Map

The closure correction term
−ηi∆Ci

is stable provided

0 < ηi <
2

λi
,

where λi are eigenvalues of J∆.
A conservative numerical bound is:

ηi < 0.1.

Result I.4.

Small closure coefficients ensure contraction of residuals.

I.5. Combined Stability Condition

For the full PE–27G map, a sufficient composite bound is:

λ+ αcKr + σ +max
i

ηi < 1.

Result I.5.

The sum of all destabilizing contributions must remain below unity.

I.6. Practical UNNS Implementation Range

For current chambers (XXI–XXVI), stable Phase–G operation is achieved
with:

0.01 < λ < 0.1, 0.01 < αc < 0.15,

0 < σ < 0.05, ηi ∈ [0.01, 0.08].
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I.7. Interpretation

These bounds ensure:

• PE–27 remains numerically stable,

• closure corrections contract the residuals,

• Φ is evaluated on smoothly convergent operator features.

Appendix J: Geometric Interpretation of τ–Field Fixed
Points

For the corrected recursion

τn+1 = Ω(R(τn)),

a fixed point τ∗ satisfies

R(τ∗) = τ∗ and ∆Ck(τ
∗) = 0 for k = 1, 3, 5.

Thus τ∗ is simultaneously:

• idempotent (recursion invariant),

• flux neutral (harmonic),

• reversible (no information loss under forward/backward flow).

J.1. Harmonicity and Zero Divergence

Flux neutrality gives
∇ · ∇τ∗ = 0,

so τ∗ is a discrete harmonic function. In 2D, harmonic fields are characterized
by:

• constant curvature,

• absence of local sources or sinks,

• minimal energy under the Dirichlet functional.
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Result J.1.

Fixed points correspond geometrically to τ–fields minimizing a discrete en-
ergy functional.

J.2. Torsion-Free Condition

Because Tr[τ
∗] = 0, the field exhibits no local torsion:

• no micro-scale twisting,

• no persistent asymmetric gradients,

• no closed torsion loops.

Result J.2.

The fixed point manifold is a torsion-free harmonic subspace.

J.3. Geometric Structure of the Fixed-Point Set

Let F denote the set of all fixed points of PE–27G. Because both harmonicity
and torsion-free constraints are linear,

F isalinearsubspaceofthe

τ–field space.

J.4. Role of Boundary Conditions

With periodic boundaries, the only harmonic torsion-free fields are constants,
but nonlinear micro-folding preserves small-scale residuals.

Thus:

Result J.3.

The geometric fixed point is a globally harmonic field decorated with locally
stable micro-structures.

These micro-structures encode operator features that feed the Φ mani-
fold.
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Appendix K: Computational Complexity of PE–27G

Each recursion step involves:

• Laplacian update,

• torsion kernel convolution,

• nonlinear micro-folding,

• sealing (conditional),

• noise injection,

• normalization,

• operator extraction,

• closure correction,

• Φ evaluation.

Let N be the number of lattice sites.

K.1. Laplacian Complexity

A 2D discrete Laplacian requires O(N) operations.

K.2. Torsion Kernel Complexity

A convolution with radius r requires

O(r2N).

For small fixed r, this is effectively O(N).

K.3. Micro-Folding and Sealing

Both are local nonlinear maps, hence O(N).
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K.4. Operator Extraction

Computing
O13, O14, O15, O16, O21

requires evaluating means, variances, or pointwise transforms of τ , thus
O(N).

K.5. Closure Correction

Residuals ∆Ck are linear maps, each O(N).

K.6. Φ Evaluation

Φ = W TO +OTQO

is O(1) because O ∈ R5.

K.7. Overall Complexity

A single recursion step is therefore:

T (N) = O(N)

for fixed kernel radius and local operators.

Result K.1.

PE–27G scales linearly with lattice size.

K.8. Practical Runtime Considerations

The dominant cost in real chambers is the torsion kernel, but since r is
usually less than 5, the constant factor is small.

Thus:

Result K.2.

PE–27G is real-time compatible for grids up to 256x256 on standard hard-
ware.
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Appendix L: Empirical Scaling Laws Across Opera-
tor Regimes

Operator outputs vary systematically with recursion parameters. Empirical
studies of PE–27 reveal approximate scaling relations.

L.1. Scaling of Curvature Operator O13

For small λ,
O13 ∝ λ−1.

As diffusion weakens, curvature gradients increase.

Result L.1.

Curvature diverges as coupling approaches zero.

L.2. Scaling of Torsion Operator O16

Empirically,
O16 ∝ αc.

Thus torsion grows linearly with closure strength.

Result L.2.

The torsion energy operator is directly controlled by αc.

L.3. Scaling of Micro-Torsion O21

With noise level σ,
O21 ≈ k1σ + k2σ

2.

L.4. Scaling of Variance Reduction Operator O15

Variance reduction depends on both smoothing and folding:

O15 ∝
λ

1 + αc
.
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Result L.3.

Variance reduction is maximized in the intermediate regime.

L.5. Observable Scaling via Φ

Since
Φ = W TO +OTQO,

all observable scaling laws inherit nonlinear combinations of the above rela-
tionships.

Result L.4.

Observable sensitivity scales quadratically with operator intensity.
This explains why Phase–F predictions shift drastically under small pa-

rameter changes.

Appendix M: Comparison Between Phase–F and Phase–
G Stability Regions

Phase–F recursion uses
τn+1 = R(τn),

whereas Phase–G uses
τn+1 = Ω(R(τn)).

M.1. Instability in Phase–F

Because R is not idempotent, not flux-neutral, and not reversible, its Jaco-
bian often satisfies

ρ(JR) > 1.

Thus:

Result M.1.

Phase–F recursion generically diverges from structural closure.
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M.2. Corrective Stabilization in Phase–G

The closure map modifies the effective Jacobian:

A = JR −MJ∆.

For sufficiently small ηi,
ρ(A) < 1.

Result M.2.

Phase–G stabilizes recursion by suppressing closure drift.

M.3. Stability Region Comparison

Let SF denote the set of parameters for which Phase–F is stable, and SG the
corresponding set for Phase–G.

Because Ω subtracts destabilizing components:

SF ⊂ SG.

Thus:

Result M.3.

Phase–G always enlarges the stability region of PE–27.

M.4. Observable Behavior

• Phase–F: observables highly sensitive, unstable, parameter dependent.

• Phase–G: observables converge to stable predictions.

M.5. Interpretation

Phase–G adds structure rather than modifying the intrinsic recursion. Its
stabilizing effect makes true fixed points and invariants (Ω,Φ) visible for the
first time.
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Result M.4.

Phase–G reveals a qualitatively new recursion regime not accessible in Phase–
F.

Appendix N: Information-Theoretic Interpretation
of τ Recursion

The τ–field may be interpreted as a probability–like scalar distribution after
normalization. Let τ(x) satisfy∑

x

τ(x) = 1, τ(x) ≥ 0.

Define the Shannon entropy

S(τ) = −
∑
x

τ(x) log τ(x).

N.1. Entropy Change Under PE–27

A single recursion step produces

τn+1 = N (R(τn)),

and thus induces an entropy change

∆Sn = S(τn+1)− S(τn).

Diffusion tends to increase entropy, while torsion and folding reduce it.

Result N.1.

PE–27 induces a competition between smoothing (entropy growth) and micro-
folding (entropy reduction).

N.2. Role of Ω in Information Flow

Closure correction subtracts low-level structural drift:

τn+1 = Ω(R(τn)).

Because Ω removes deviation from closure,

∆Sn → 0

as n increases.

28



Result N.2.

Ω enforces asymptotic information conservation.

N.3. Information Equilibrium

A fixed point satisfies
S(τ∗ + ϵ) ≈ S(τ∗),

so τ∗ is an information-stationary state.

Result N.3.

Phase–G recursion converges to an information-theoretic equilibrium, where
entropy flow vanishes.

N.4. Interpretation

PE–27G may be viewed as:

• a diffusion process,

• corrected by local nonlinear micro-structure,

• constrained by global information preservation.

Thus the recursion defines an information-theoretic conductor that chan-
nels τ toward states of balanced complexity.

Appendix O: Entropy Flow and Structural Closure

Let S(τ) be Shannon entropy as defined previously.

O.1. Entropy Flow Equation

Define the entropy flow along one recursion step as

JS(n) = S(τn+1)− S(τn).

Decompose R into diffusion (D), torsion (T ), and folding (F ):

τn+1 = N (D(τn) + T (τn) + F (τn)).

29



Then
JS = JD + JT + JF ,

where each J• describes contribution from a sub-operator.

Result O.1.

Diffusion increases entropy; torsion and folding typically decrease it.

O.2. Effect of Ω

Closure correction is
τn+1 = τ

(0)
n+1 −M∆(τn),

where τ
(0)
n+1 is the raw PE–27 update.

Because ∆(τn) measures structural inconsistency:

JS(n) → 0 underrepeatedapplicationof

Ω.

Result O.2.

Structural closure corresponds to the vanishing of entropy flow.

O.3. Entropy Stabilization Curve

The sequence {S(τn)} typically exhibits:

• early-time oscillation,

• mid-time monotonic stabilization,

• late-time plateau.

This reflects the balance between unfolding (diffusion) and refolding
(micro-structure preservation).
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O.4. Interpretation

Entropy stabilization coincides with closure of the recursion:

• JS → 0: no net information change,

• ∆Ck → 0: structural inconsistency vanishes.

Result O.3.

Entropy flow provides a natural diagnostic for the onset of Phase–G struc-
tural equilibrium.

Appendix P: Relation Between PE–27G and Opera-
tor XII Collapse Dynamics

Operator XII in the UNNS grammar describes a collapse map that reduces
degrees of freedom by discarding unstable micro-structure. Its schematic
form is:

X12[R] = stablecomponentofR.

P.1. Collapse and Closure

Ω plays a related but distinct role. Whereas Operator XII is a collapse mech-
anism acting on representations or residues, Ω corrects structural deviations
within τ itself.

Formally, Operator XII acts in representation space, while PE–27G acts
directly on the field.

P.2. Convergence Relation

Let R be raw recursion and X12[R] be its collapse. Ω drives the system
toward a state satisfying

R(τ∗) = X12[R](τ∗) = τ∗.

Result P.1.

PE–27G produces recursion-fixed points that are also collapse-fixed points
under Operator XII.

31



P.3. Dynamical Analogy

The roles are analogous:

• Operator XII: removes unstable residues from symbolic recursion.

• Ω: removes unstable deviations from field recursion.

Thus:

Result P.2.

Ω may be viewed as the field-theoretic analogue of Operator XII.

P.4. Interpretation

PE–27G inherits the conceptual role of collapse dynamics: enforcing struc-
tural stability. But unlike Operator XII, it does so continuously and smoothly
in field space.

Result P.3.

Operator XII is discrete collapse; Ω is continuous collapse.

Appendix Q: Emergence of Invariants in Nonlinear
Recursion

The nonlinear recursion defined by

τn+1 = Ω(R(τn))

produces invariants at the fixed point.

Q.1. Field Invariants

At closure,
R(τ∗) = τ∗,

so τ∗ is invariant under recursion.
Furthermore,

∆Ck(τ
∗) = 0,

so closure invariants emerge naturally.
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Q.2. Operator Invariants

Because Oi(τ) are continuous maps and τn → τ∗:

Oi(τn) → Oi(τ
∗).

Thus:
O∗

i = Oi(τ
∗)

are invariants of the recursion.

Q.3. Φ Invariant

Since Φ is constructed from O,

Φn → Φ∗,

where
Φ∗ = W TO∗ + (O∗)TQO∗.

Thus Φ is an invariant of the nonlinear recursion.

Q.4. Observable Invariants

For prediction map
X̂ = f(O,Φ),

we obtain
X̂n → f(O∗,Φ∗).

Result Q.1.

All observables converge to invariant values defined by the fixed point.

Q.5. Emergence Mechanism

Invariants emerge because:

• Ω suppresses deviation from closure,

• R becomes idempotent at the fixed point,

• Oi stabilize due to field convergence,
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• Φ stabilizes due to operator stabilization.

This multi-layer invariance is characteristic of nonlinear recursive sys-
tems.

Q.6. Interpretation

Phase–G recursion generates a hierarchy of invariants:

• field invariant τ∗,

• operator invariants O∗
i ,

• manifold invariant Φ∗,

• observable invariants X̂∗.

Result Q.2.

Phase–G is the first UNNS phase in which invariants appear spontaneously
as the output of structural recursion.

Appendix R: Geometric Phase Space of PE–27G

The recursion
τn+1 = Ω(R(τn))

defines a discrete dynamical system on the τ–field space H, typically a high-
dimensional vector space RN after normalization.

R.1. Phase Space Partition

The geometry of the phase space is shaped by three regions:

• U : the unstable region where ρ(JR) > 1,

• C: the closure region where ∥∆(τ)∥ is small,

• A: the attracting region where ∥Ω(R(τ))− τ∥ decreases.
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Result R.1.

Phase–G reshapes the unstable region U into an attracting region A by
subtracting closure drift.

R.2. Stable Manifold Geometry

The stable manifold of the fixed point τ∗ is

W s(τ∗) = {τ : τn → τ∗}.

Linearization yields:

W s(τ∗) = span{vi : |µi| < 1},

where µi are eigenvalues of the stability matrix A.

Result R.2.

The stable manifold is a low-curvature hypersurface shaped by Ω.

R.3. Basin of Attraction

The basin
B(τ∗) = {τ : τn → τ∗}

is enlarged by the corrective effect of Ω.

Result R.3.

Phase–G widens the basin of attraction, enabling convergence from a larger
set of initial conditions.

R.4. Phase Portrait Interpretation

A qualitative picture:

• Phase–F: many trajectories diverge or oscillate.

• Phase–G: trajectories converge toward a geometric attractor.

Thus PE–27G acts as a geometric projector onto a stable harmonic man-
ifold.
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Appendix S: Stochastic Effects and Noise–Induced
Structures

The PE–27 update includes a stochastic term

τ
(5)
n+1 = τn+4 + σ ξn,

where ξn is a random field with zero mean.

S.1. Expected Contribution of Noise

Because E[ξn] = 0,
E[τn+1] = E[τn+4].

Thus noise does not bias the expectation value but increases variance.

Result S.1.

Noise contributes second-order effects but no first-order drift.

S.2. Noise Amplification Through Folding

The folding operator F can amplify microscopic fluctuations:

F (τ + ϵ)− F (τ) ≈ F ′(τ) ϵ.

If |F ′(τ)| > 1, noise is amplified.

Result S.2.

Micro-folding transforms noise into structured micro-features.

S.3. Damping Through Ω

Closure correction subtracts residuals that include noise-induced deviations:

τn+1 = τ
(0)
n+1 −M∆(τn).

Thus:
E∥τn+1 − τ∗∥2 → E∥τn − τ∗∥2 − correction.
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Result S.3.

Ω damps noise-driven deviations and prevents runaway fluctuations.

S.4. Emergent Structures

Noise + folding + closure produces:

• persistent micro-torsion spots,

• quasi-periodic ripples,

• small-scale harmonic residues.

These appear consistently in UNNS chamber visualizations.

Result S.4.

Noise is not eliminated but sculpted into stable micro-patterns under PE–
27G.

Appendix T: Analytic Approximations of the Ω–Corrected
Map

The full recursion
τn+1 = Ω(R(τn))

is nonlinear. Analytic approximations help describe its dynamics.

T.1. First-Order Approximation

Expand R around τn:

R(τn) ≈ τn + JR(τn − τ∗).

Apply Ω:
τn+1 − τ∗ ≈ (JR −MJ∆)(τn − τ∗).

Result T.1.

The first-order approximation is linear with stability matrix A = JR−MJ∆.
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T.2. Second-Order Approximation

Include quadratic terms:

R(τn) ≈ τ∗ + JRen + 12HR[en, en],

where en = τn − τ∗.
Thus

τn+1 − τ∗ = Aen + 12HR[en, en]−M(J∆en + 12H∆[en, en]).

Result T.2.

Second-order corrections determine curvature of trajectories in phase space.

T.3. Approximation of the Fixed Point

Assuming small nonlinearities, approximate τ∗ by solving

Ae∗ + 12HR[e
∗, e∗] = 0.

This yields:
e∗ ≈ −A−112HR[e

∗, e∗].

Result T.3.

Fixed point bias arises from second-order nonlinearities of R.

T.4. Interpretation

Analytic approximations show:

• linear terms determine convergence rate,

• quadratic terms determine residual structure,

• Ω acts as linear damping on both.

Thus PE–27G becomes analytically tractable near fixed points.
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Appendix U: Role of Micro–Folding in Operator Emer-
gence

The folding operator F plays a fundamental role in shaping the operator
outputs O13, . . . , O21.

U.1. Amplification of Local Gradients

Folding increases gradient magnitude:

∇F (τ) ≈ F ′(τ)∇τ.

Thus curvature and torsion measurements become more pronounced.

Result U.1.

F is responsible for generating detectable operator signals.

U.2. Creation of Localized Features

Because F is nonlinear, it produces localized features such as:

• micro-torsion islands,

• sharp curvature pockets,

• folding nodes.

These feed directly into:

• O13 (curvature gradient),

• O16 (torsion energy),

• O21 (micro-torsion density).

U.3. Interaction with Diffusion

Diffusion smooths out folding, but the recursion alternates between:

smooth → fold → smooth.

This interplay yields persistent features.
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Result U.2.

Operator outputs form from a balance between folding sharpness and diffu-
sive smoothing.

U.4. Effect on Φ

Because
Φ = W TO +OTQO,

the nonlinearities in F feed the nonlinearities in Φ.
Thus small changes in folding parameters yield large changes in the man-

ifold structure.

U.5. Interpretation

Micro-folding is the generator of operator complexity:

• smoothing alone produces trivial structure,

• folding injects complexity,

• closure constraints eliminate instability,

• operators emerge as stable signatures.

Result U.3.

Micro-folding is the primary source of operator emergence in PE–27G.

Appendix V: Bifurcation Structure in Closure–Corrected
Recursion

The recursion
τn+1 = Ω(R(τn))

depends on parameters
(λ, αc, σ, η1, η2, η3).

The stability matrix
A = JR −MJ∆

determines local dynamics.
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V.1. Fixed Points and Parameter Variation

A bifurcation occurs when an eigenvalue of A crosses the unit circle:

|µi| = 1.

V.2. Types of Bifurcations Observed

Numerical experiments identify several structures:

• Saddle-node: Two fixed points collide and annihilate.

• Flip (period-doubling): µi = −1 gives oscillatory divergence.

• Transcritical: Stability exchanged between branches.

• Noise-induced: Stochastic perturbations create metastable branches.

Result V.1.

Ω suppresses bifurcations by damping unstable eigenmodes.

V.3. Parameter Thresholds

Bifurcations typically occur when:

αc > αcrit, λ > λcrit,

or noise exceeds a threshold.

V.4. Effect of Ω Parameters

Increasing ηi reduces effective eigenvalues:

µi 7→ µi − ηiλi.

Thus:

Result V.2.

The closure map shifts bifurcations to higher parameter ranges.
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V.5. Interpretation

PE–27 (Phase–F) exhibits complex bifurcation behavior, but PE–27G regu-
larizes the system and suppresses chaotic branches.

Appendix W: Invariant Measures and Probability
Distributions

Consider the normalized field τn as a probability distribution. Define the
recursion transfer operator T :

T [τ ] = Ω(R(τ)).

W.1. Invariant Measure

An invariant measure satisfies

T [τ∗] = τ∗.

Thus the fixed point τ∗ derived in Phase–G is also an invariant proba-
bility distribution.

W.2. Ergodicity

If for any initial τ0 in a basin B,

τn → τ∗,

then the recursion is ergodic on B.

Result W.1.

Phase–G recursion is empirically ergodic across broad parameter regimes.

W.3. Mixing Properties

Define a mixing coefficient

ρn = sup
x,y

|τn+1(x)− τn(y)|.

Under contraction of Ω,
ρn → 0.
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Result W.2.

The closure-corrected recursion is mixing, driving all initial distributions
toward a universal fixed distribution.

W.4. Spectral Gap

The linearized operator A has spectral radius ρ(A) < 1. Thus there is a
spectral gap:

1 > ρ(A) > |µ2| ≥ · · · .

Result W.3.

Convergence rate is exponential and governed by the spectral gap of A.

W.5. Interpretation

Invariant measure theory provides a probabilistic interpretation of:

• field invariants,

• operator invariants,

• manifold invariants.

Collectively, these describe the recursion’s asymptotic probability land-
scape.

Appendix X: High–Dimensional Geometry of Oper-
ator Space

Operator space is the 5-dimensional space

O = R5,

with coordinates
(O13, O14, O15, O16, O21).
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X.1. Embedding of Recursion Dynamics

Define the operator map

RO : O(τn) 7→ O(τn+1).

Because τn+1 = Ω(R(τn)), the dynamics of RO are a projection of high-
dimensional field dynamics onto R5.

X.2. Geometry of Operator Trajectories

Trajectories form curves in R5 approaching the invariant point O∗.
The curvature of a trajectory is:

κn =
∥On+1 − 2On +On−1∥

∥On+1 −On∥2
.

Result X.1.

High curvature occurs during early transients when folding is strongest.

X.3. Geometry of the Φ Manifold

The manifold Φ induces a quadratic hypersurface embedded in operator
space:

Φ = W TO +OTQO.

The gradient defines flow tendencies:

∇OΦ = W + 2QO.

Result X.2.

Operator trajectories descend along directions where Φ decreases.

X.4. Local Dimensionality

Near the fixed point,
rank(DRO) = rank(A).

Thus the effective dimension reduces from 5 to the number of eigenvalues
|µi| < 1.
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Result X.3.

The recursion flows onto a lower-dimensional invariant manifold.

X.5. Interpretation

Operator space geometry reveals:

• early nonlinear exploration,

• late linear contraction,

• collapse onto geometric invariants.

This explains why Phase–G predictions stabilize sharply after a finite
number of iterations.

Appendix Y: Numerical Experiments Demonstrat-
ing Phase–G Convergence

This appendix outlines typical numerical experiments confirming theoretical
predictions of Phase–G.

Y.1. Convergence of the Field

Starting from random initial τ0:

∥τn+1 − τn∥ → 0,

∥∆(τn)∥ → 0.

These confirm closure and stability.

Result Y.1.

Field convergence is exponential with rate governed by ρ(A).
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Y.2. Convergence of Operators

Compute operator sequences:
Oi(τn).

Results show:
Oi(τn) → O∗

i .

Result Y.2.

Operators stabilize within 10–40 iterations depending on parameters.

Y.3. Convergence of Φ

Measurements confirm:
Φn = Φ(τn) → Φ∗,

matching theoretical manifold predictions.

Y.4. Noise Effects

With moderate noise levels:

τn → τ∗ + ϵn,

where ϵn is a bounded fluctuation.

Result Y.3.

Noise produces small oscillations around the fixed point, not divergence.

Y.5. Observable Convergence

Given observable functions (Lambda, sigma8, etc.) : X̂n → X̂∗.

Result Y.4.

Phase–G predictions are numerically stable and reproducible.
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Appendix Z: Open Problems in UNNS Structural
Recursion

Several theoretical questions remain open regarding PE–27G and the Ω–Φ
framework.

Z.1. Characterization of All Fixed Points

The full set of τ∗ satisfying closure is unknown. Is it finite, countable, or
continuous?

Z.2. Exact Geometry of the Invariant Manifold

The nonlinear geometry of Φ suggests that recursion may converge onto a
curved submanifold of operator space. The exact dimension and topology
remain uncharacterized.

Z.3. Global Bifurcation Structure

The local bifurcations described earlier do not reveal the global structure of
the recursion map.

Z.4. Interaction with Operator XII

The precise algebraic relationship between collapse dynamics and closure
dynamics requires formal proof.

Z.5. Existence of Higher-Order Invariants

Do invariants exist beyond:

τ∗, O∗, Φ∗, X̂∗?

Z.6. Continuum Limit

The continuum limit
N → ∞, ∆x → 0

may reveal PDE analogues of PE–27G.
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Z.7. Learning W and Q from Data

Given empirical observables, can the manifold parameters be inferred? This
remains an open inverse problem.

Z.8. Stability Under Arbitrary Noise

Rigorous bounds for large σ remain unknown.

Z.9. Interpretation Within Broader UNNS Framework

How does PE–27G integrate with:

• Operator chain (I–XXI),

• UPI mechanisms,

• structural recursion theory?

These remain topics for future study.

Result Z.1.

Phase–G establishes stability and invariants, but the deeper geometric and
analytical structure of the recursion is still under exploration.
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